Attention

This is no longer maintained and has been superseded by datajoint-company/datajoint-docs. Please file new issues there (or help contribute!). We are currently migrating and generating new content until December 2022 after which we’ll be decomissioning https://docs.datajoint.org and https://tutorials.datajoint.org in favor of https://datajoint.com/docs/.

Publications

The following are some of the studies that used DataJoint for building their data pipelines.

  1. Rosón, M. R., Bauer, Y., Kotkat, A. H., Berens, P., Euler, T., & Busse, L. (2019). Mouse dLGN receives functional input from a diverse population of retinal ganglion cells with limited convergence. Neuron, 102(2), 462-476.

  2. Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker, E. Y., … & Bethge, M. (2018). A rotation-equivariant convolutional neural network model of primary visual cortex. arXiv preprint arXiv:1809.10504.

  3. Chettih, S. N., & Harvey, C. D. (2019). Single-neuron perturbations reveal feature-specific competition in V1. Nature, 567(7748), 334.

  4. Denfield, G. H., Ecker, A. S., Shinn, T. J., Bethge, M., & Tolias, A. S. (2018). Attentional fluctuations induce shared variability in macaque primary visual cortex. Nature communications, 9(1), 2654.

  5. Shan, Kevin Q., Evgueniy V. Lubenov, and Athanassios G. Siapas. “Model-based spike sorting with a mixture of drifting t-distributions.” Journal of neuroscience methods 288 (2017): 82-98.

  6. Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature communications, 7, 13289.

  7. Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., & Baden, T. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature, 542(7642), 439.

  8. Cadwell, Cathryn R., et al. “Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq.” Nature biotechnology 34.2 (2016): 199.

  9. Shan, K. Q., Lubenov, E. V., Papadopoulou, M., & Siapas, A. G. (2016). Spatial tuning and brain state account for dorsal hippocampal CA1 activity in a non-spatial learning task. Elife, 5, e14321.

  10. Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., … & Tolias, A. S. (2015). Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), aac9462.

  11. Yatsenko, D., Josić, K., Ecker, A. S., Froudarakis, E., Cotton, R. J., & Tolias, A. S. (2015). Improved estimation and interpretation of correlations in neural circuits. PLoS computational biology, 11(3), e1004083.

  12. Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355-362.

  13. Erisken, S., Vaiceliunaite, A., Jurjut, O., Fiorini, M., Katzner, S., & Busse, L. (2014). Effects of locomotion extend throughout the mouse early visual system. Current Biology, 24(24), 2899-2907.

  14. Froudarakis, E., Berens, P., Ecker, A. S., Cotton, R. J., Sinz, F. H., Yatsenko, D., … & Tolias, A. S. (2014). Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nature neuroscience, 17(6), 851.

  15. Ecker, A. S., Berens, P., Cotton, R. J., Subramaniyan, M., Denfield, G. H., Cadwell, C. R., … & Tolias, A. S. (2014). State dependence of noise correlations in macaque primary visual cortex. Neuron, 82(1), 235-248.

  16. Cotton, R. J., Froudarakis, E., Storer, P., Saggau, P., & Tolias, A. S. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in neural circuits, 7, 151.

  17. Vaiceliunaite, A., Erisken, S., Franzen, F., Katzner, S., & Busse, L. (2013). Spatial integration in mouse primary visual cortex. Journal of neurophysiology, 110(4), 964-972.

Talk to the Community